5603

崩珠 AI の予測ステップによる試合結果

Poje AI play result about prediction steps.

08550 村澤慶亮 指導教員 大島真樹

1. 研究目的

ターン制ゲームの一種である崩珠の AI は予測を数手先までした方が強くなると予想できるが、それを測定した結果はない.

本研究は、AIの予測によって強さにどのような影響を 及ぼすかを研究する.

2. 実験方法

準備した AI をそれぞれ AI1, AI2, AI3, AI4 と する. このサンプルプログラム同士を 100 試合対戦 させ, 結果を測定する. 対戦を 10 回 1 セットとし, 10 セットに分けて, これを t 検定して有意差の有無を 求める.

3. 実験環境

・PC スペック

OS: Windows 7 Professional 32 ビット

プロセッサ:Intel(R) Core(TM) i3-2120 CPU @

3.30GHz(4 CPUs). 3.3GHz メモリ: 2048MB RAM

·Windows Visual studio2010

4. 実験準備

1) 崩珠とは

北陸先端大学の研究・開発しているゲームに「崩珠」と呼ばれるものがある. 「崩珠」とは、SEGA から発売しているスーパーファミコン用ゲーム「ぷよぷよ」を元にそこからリアルタイム性を失くし、パズル性や戦略性を高めたゲームである.

2) 各 AI の特徴

AII の特徴:自分が相手に与えるダメージを目安として 18 程度与えられる場合に攻撃する. 次の珠(以降 Next と表記)を見ずに連鎖を組む.

AI2の特徴:相手からの攻撃が3手以内に迫った場合に最大攻撃力で攻撃. Next を見ずに連鎖を組む.

AI3の特徴:相手からの攻撃が3手以内に迫った場合に攻撃する. Next2 つ分の珠を見ている.

AI4の特徴:相手からの攻撃が3手以内に迫った場合に攻撃する. Next2+1 つ分の珠を見ている.

5. 実験結果

以下の表 1 は各 AI の勝敗数を総合したものである.

表 1:各 AI の総合戦績

7-0 0				
	AI1	AI2	AI3	AI4
AI1	×	13-87	3-97	9-91
AI2	87-13	×	8-92	12-88
AI3	97-3	92-8	×	23-77
AI4	91-9	88-12	77-23	×

異なるAI同士の対戦結果をt検定し有意差の有無を調べ、それを表にしたものが下記の表2である(見方の例:表左側の AI1 に対する AI2 の戦績と AI3 の戦績).

表 2:AI の対戦成績の t 検定結果

	AI2 ŁAI3	AI2 ŁAI4	AI3 Ł AI4
AI1	有	無	無
	AI1 كAI3	AI1 كAI4	AI3とAI4
AI2	有	有	無
	AI1とAI2	AI1 ŁAI4	AI2とAI4
AI3	無	有	有
	AI1とAI2	AI1 ŁAI3	AI2とAI3
AI4	無	有	無

6. 考察

AI3 と AI4 を直接対決させると, AI4 が強いが, AI1, AI2 に対する AI3, AI4 の戦績を見ると, AI3 の勝利数が多い. つまり, 単純に階段状に強くなっているわけではなく, 相性がある.

7. 参考文献

[1] Poje ikeda Laboratory Project : Poje-ikeda Laboratory Project,入手先

http://www.jaist.ac.jp/is/labs/ikeda-lab/poje/⟩ (参照 2012-02-05)

[2] 関連性行列を用いたぷよぷよの定型連鎖構成法:宮沢 大介,池田 心,橋本隼一,入手先 〈 https://ipsj.ixsq.nii.ac.jp/ej/index.php?active_actio n=repository_view_main_item_detail&item_id=782 48&item_no=1&page_id=13&block_id=8 〉(参照 2013-02-10)

[3] t 検定: 奥村 晴彦, 入手先

〈 http://oku.edu.mie-u.ac.jp/~okumura/stat/ttest.php 〉(参照 2013-02-18)