3701

誘導型磁気浮上推進装置の動作機構に関する研究

Experimental Research on Mechanism of Induction-type Magnetic Levitation Propulsion System

EE03 石部彪 指導教員 渡邉聡

1. 緒言

現代の工場では、電動機駆動式の運搬装置が用 いられている。この装置には、ギアなどの金属部 品同士の摩擦による騒音や粉塵の発生、装置自体 の発熱などの問題があり、装置自体の寿命を短く している。そこで上記の問題点を解決する方法と して、磁気反発を用いた、浮上推進装置が検討さ れている。浮上推進装置は、駆動部と固定部が非 接触なので、摩擦・摩耗の問題が無くなり、寿命 が従来の装置に比べて伸びると考えられる。現在 検討されている浮上推進装置には、センサが多く 使われるため装置の構成が複雑になり、それによ り電源が複数存在している。また、浮上させる金 属導体の形状も機構に合わせて製作されている ため、移動機構にあった制御が必要である。そこ で、本研究ではセンサを用いず、単電源で動作可 能な浮上推進装置を提案する。金属導体の形状は、 より利用範囲の拡大や外乱に対応できると考え 円形の非鉄金属板を検討する。

2. 構成

図1のようにコイルを配置し、移動機構の製作を 行った。本装置はより推進力を増すために、77個 のコイルを $u\rightarrow v\rightarrow w$ の順で配置している。図1の 緑、青矢印は発散力、復元力の生じる方向をあら わしており、両力が打ち消し合うので、推進力のみ が一様に分布されることを表している。この機構に より、直径の異なる円盤の移動が可能となった。

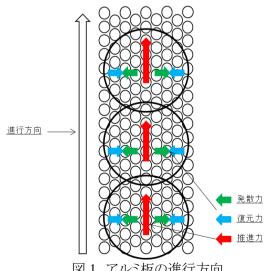


図1 アルミ板の進行方向

3. 測定及び結果

測定は、直径 360[mm]、厚さ 4[mm]、6[mm]、 8[mm]、直径 290[mm]、厚さ 3[mm]の円盤を用い た。図2に各円盤の入力電圧に対する始動時に生 じる推進力の特性を示す。グラフより円盤の厚さが 薄い程、推進力が強くなっていた。円盤の大きさに おける推進力の違いはみられなかった。試験より、 中心方向で円盤が保持されていたので、発散力よ りも復元力が強く働いていると考察した。

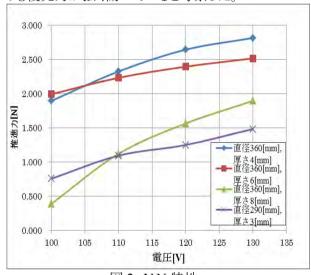


図 2 V-N 特性

4. 結 論

大きさ・厚さの異なる円盤の推進力の測定を行い、 円盤の厚さ・大きさによって発生する推進力の変化 を確認した。円盤の厚さが薄くなる程、抵抗値は高 くなり、大さによっても抵抗値は変化すると考えられ る。このことから、推進力誘導電動機の比例推移と 推進力の関係から円盤の抵抗値が推進力に影響 したと考えられる。

5. 今後の展望

励磁の極性を入れ替えることによる、方向転換、 速度調整、移動方向を自由に変えることができる 励磁の組み合わせと、コイル配置の検討を行う。さ らに、インバータによる周波数変換やスイッチング の切り替えによる効率の向上を図る。

文献

[1]本田 龍彦,沢田石 亘",平成23年度版 "誘導型磁気浮上推進装置分岐機構の実験的研究",平成 23 年版サレジオ高専論文,pp.14-23,(2012)